#106 #4 EO 080523 Estructura vs Rociadores

EL 08052023

El rociador es una «cosititita» que se ubica debajo del techo. Este ayuda a proteger el inmueble en caso de un incendio, y se activa de forma automática. Cuando decimos que es automático nos referimos a que no se necesita de una persona que esté en ese momento para activarlo. Este se activa por diferencia de temperatura mas la presión del agua dentro de las tuberías que provocan el flujo de agua de forma automática.

Pero esta publicación no es para hablarte solamente del rociador. Queremos platicarte por qué es importante que el rociador se module con la estructura. Muchas empresas de diseño no le dan la importancia que debe y permiten que el diseño se realice sin considerar la estructura con el argumento de que en campo se resolverá. Lo que en realidad no te dicen es que en campo lo que se resolverá son todos los faltantes que no te consideró en la cotización.

Al no haber coordinación de rociadores y estructura, en campo se deben hacer muchas consideraciones para que los rociadores no se vean afectados por la estructura. Cuando decimos afectaciones nos referimos a las obstrucciones.

Diseño de Rociadores

Una situación común en los diseños es que no se cuente con la estructura. Esto se debe a varias situaciones.

  • Todas las especialidades comenzaron al mismo tiempo y por lo tanto no tienes forma de comenzar si la estructura también va comenzando.
  • El estructurista no envía la información porque, como nos dijeron una vez, «lo tuyo son unos tubitos». Tubitos? tubitos cuando le pasamos al cliente la orden de cambio por las obstrucciones.
  • Es un lugar existente y no cuentan con los planos asbuilt y el diseñador no considera hacer toma de medidas de la estructura.
  • No esta completa la información de la estructura.

Todos comienzan al mismo tiempo

Estos casos son poco probables debido a que normalmente las instalaciones mecánicas llegan al proyecto cuando ya hay un diseño arquitectónico y estructural. Puede llegar a pasar, pero muy poco.

No envían la estructura

Todos somos celosos de nuestro trabajo y no nos gusta que nos presionen y menos que nos estén pidiendo cosas. Cuando la estructura se hace al mismo tiempo si representa un problema porque así como nosotros podemos cambiar cosas, el estructurista también. Si observa que por las instalaciones debe poner refuerzos, eso hace que revisemos de nuevo nuestro diseño.

Una situación actual. La estructura se está diseñando con unos refuerzos que conocemos como Liga joist (Ver imagen). Si bien es un elemento pequeño, cuando es un rociador ESFR debemos poner especial atención, ya que es la diferencia entre poner 5 ramales o 4 ramales.

Es un lugar existente

Nos pasó una vez. Nuestra empresa hermana cotizó una instalación. El diseño o ingeniería lo realizó otra firma de ingeniería. No consideraron estructura, así que pusieron rociadores sin esta. Al hacer la revisión, nos dimos cuenta que no estaba la estructura, la solicitamos y nos dimos cuenta que el sistema podía rotarse 90 grados y con eso podíamos crear un ahorro, quitar soportes trapecio y colocar soporte tipo pera. Esto significó un gran ahorro para el cliente.

No está completa la información

Cuando no está completa la información sucede que no estamos seguros al 100% si un rociador estará obstruido o sí alguna tubería tendrá un «offset». Cuando estamos diseñando desde un inicio todas las especialidades, es necesario estar pendiente de las actualizaciones de las ingenierías. Mira las imágenes.

Se colocó un rociador en un área que estaba descubierta, sin embargo, en la instalación se encontró que se colocó una subestructura para colgar accesorios. No hubo coordinación entre el sistema contra incendios y la estructura. Esto provoca que se tengan que mover los rociadores o la subestructura. Sea cual sea, genera un costo que se puede evitar en papel.

Si bien aquí el desvío en la tubería se debió a un error del ingeniero, un «strut» puede causar el mismo efecto, un desvío de la tubería que tal vez no se considera en el diseño y que se debe adecuar en campo. Si piensas que un desvío así no afecta en la instalación, piensa que es tubería de 2 pulgadas y 50 ramales. 50 veces 4 codos + coples + riser niple para hacer el «offset». Pon número a eso y verás que si tiene impacto.

Si comienzas a diseñar, no se te olvide pedir la estructura. Si eres instalador y estas cotizando la instalación, pide que te manden la estructura en los planos del sistema contra incendios.

Te comparto este vídeo donde te platico de la importancia de la estructura cuando diseñamos rociadores.

Eduardo López

Ingeniero Mecánico, NICET, CFPS, CETRACI

#105 #3 EO 20022023 Áreas de un sistema rociadores contra incendios

#105 EL 20022023

El concepto de sistemas de protección de incendios puede ser muy amplio o muy corto dependiendo del contexto en que lo uses. Para muchos, el sistema contra incendios es el sistema de alarmas; para otros es el sistema de mangueras; para otro es el cuarto de bombas; para otro es los rociadores; y así nos podemos ir identificando cada área.

Puede ser tan complejo como queramos o tan sencillo como lo deseemos.

En este tema te platicaré como podemos seccionar el sistema contra incendios en áreas para así poder identificar y comprender cada una de ellas.

Tipos de áreas

Entendamos como área al concepto que ésta representan dentro de los sistemas de protección de incendios. Una área puede comprender un solo panfleto de la NFPA y otro puede incluir varios, pero al final, este seccionamiento por áreas nos puede ayudar a entender los límites de los sistemas de protección de incendios en cuanto a los diseños.

Un sistema contra incendios lo podemos dividir en 4 grandes áreas para estudiar.

  1. Tanque
  2. Bomba
  3. Red exterior
  4. Sistemas de rociadores/mangueras/boquillas

A partir de estas áreas podemos expandir la zona para revisar o determinar que es lo que debemos hacer, contemplar, o diseñar en cada una. El tanque no solo es el tanque, es cimentación, succión, llenado, boquillas, anclas, etc.

Comencemos por el tanque.

Tanque para almacenamiento de Agua contra incendios

Las bombas contra incendios no crean agua, solo la mueven de un lugar a otro. El agua debe provenir de algún lugar. En LATAM, los diseños de protección de incendios se hacen considerando un almacenamiento de agua por medio de un tanque.

Los tanques se regirón por los criterios que el diseñador se base para estos y por la NFPA 22, ademas de evaluar las condiciones sísmicas del lugar donde se colocara el tanque.

El tanque no tiene que ser solo de hojas de metal, también puede ser de concreto. El tanque de concreto, al igual que el de metal, se debe regir por las mismas normas además de las que le apliquen por ser concreto.

Para el tanque se debe considerar tipo de suelo, cimentación, anclas, ancho del tanque, altura del tanque, capacidad del sci y/o doméstica, etc.

Bomba contra incendios

El cuarto de bombas debe estar a un lado del tanque. El tanque no puede estar muy lejos debido a la caída de presión que se puede presentar al transportar el agua desde el tanque a la succión de la bomba. El agua viaja desde el tanque a la succión de la bomba por gravedad.

En el cuarto de bombas se involucra el NFPA 20 así como otras normas mexicanas. La bomba contra incendios se utiliza para darle fuerza al agua y hacer que llegue a donde debe llegar con la presión necesaria para que trabaje. La bomba no crea agua, solo le da impulso.

En el cuarto de bombas tendremos más elementos o dispositivos que debemos tomar en cuenta como:

  • Válvulas de seccionamiento o control.
  • Medidor de flujo.
  • Válvula de relevo.
  • Válvula check.
  • Tuberías de diferentes diámetros.
  • Tanque Disel.
  • Tableros de control.
  • Líneas de sensado.
  • etc.

Red Exterior

Puede ser aérea o enterrada. La tubería enterrada se deberá regir por la NFPA 24, mientras la que tubería enterrada por la NFPA 24 y la 13 ya que tendrá elementos que tienen que ver con las especificaciones de tubería, soportes, accesorios, etc.

Este es una área muy importante del sistema contra incendios y es debido a que por medio de ésta se puede distribuir al área #4 que es la de rociadores o mangueras o boquillas.

La misma bomba puede alimentar un sistema de ESFR, un sistema de diluvio, un sistema de foam, un sistema de mangueras, etc. Todos estos pueden estar en diferentes edificios pero se alimentan por medio de la red exterior.

Sistema de Rociadores o Sistema de Mangueras o Sistema con Boquillas

Puede ser cualquier tipo de sistema de tuberías enfocado a la acción final de proteger las mercancías, lugar o equipo.

Aquí podemos encontrar un sistema de rociadores para oficinas, para producción, un almacén con rociadores ESFR, cuartos mecánicos que tienen rociadores k8.0 o k11.2 así como almacenes donde solo les piden colocar mangueras contra incendios para pasar bomberos.

Sistemas de diluvio, de pre-acción que protegen equipos o tanques son otros usos para esta red de tuberías.

Relación

Todas éstas áreas están relacionadas unas con otras. sin ellas no puede funcionar el sistema de tuberías para llevar agua a la zona a proteger.

Si la bomba no tiene la presión suficiente o no es de la capacidad adecuada, entonces no importa que las tuberías en el sistema de rociadores sea la más adecuada, el agua nunca llegará con la presión suficiente.

Si la tubería de la red contra incendios exterior enterrada o aérea no es la adecuada, no importa que la bomba tenga la capacitad suficiente, el agua no llegará con la presión suficiente para combatir el incendio.

Si el tanque para almacenar agua no es de la capacidad que se necesita, no importa que la bomba sea la adecuada, no importa que las tuberías sean las indicadas, no habrá suficiente agua para combatir el incendio.

Su relación es directa. No se puede realizar un diseño hasta la base del riser y decir que ahí termina. sin embargo, existen situaciones en las que el cliente no cuenta con la información completa y en esos casos es cuando se puede calcular hasta la base del riser indicando que el cliente debe proveer la cantidad de agua y presión que se necesita para que funcione el sistema.

Tuvimos un cliente que hizo un trabajo completo en crear sus especificaciones basado en lo que produce y almacena. En sus especificaciones indicaban que la presión mínima en la base del riser debía ser 90 psi. Con esto se aseguraban de que, si un diseñador hace la red exterior y otro el interior, los dos consideren ese dato para sus diámetros. El diseñador de la red debía asegurarse que en la base del riser lleguen 90 psi como mínimo. El diseñador del interior debía calcular considerando que en la base del riser tiene 90 psi o más.

Ahora que ya conoces las principales áreas de un sistema contra incendios, ¿Qué opinas cuando te dicen que no tienen la información de la bomba contra incendios?

Ing. Eduardo López

Certificado NICET, CETRACI y CFPS.

#104 #1 PO 12102022 – 10 PASOS PARA OBTENER LA APROBACION DE LA AUTORIDAD CON JURIDICCION DENTRO DE UN MUNICIPIO DE UN PROYECTO CONTRA INCENDIO.

La idea es compartir de una forma resumida los pasos típicos a seguir para obtener la aprobación o autorización de un proyecto contra incendio en México. Cabe aclarar que siendo México del tamaño que es, cada municipalidad tendrá sus variantes, pero los primeros pasos nos deben ayudar a entender para saber qué es lo que debemos hacer.

Paso 1

Averiguar quiénes son las dependencias encargadas de la aprobación de un proyecto, hay municipios o ciudades, que será el Departamento de Protección Civil, otras donde será el H. Cuerpo de Bomberos, inclusive hay lugares donde son el mismo, lo que nos lleva al paso 2.

Paso 2

Pedir la información directamente en la dependencia.

Paso 3

Obtener formatos y pasos. Fijarse que sean los de la administración en curso y corroborar los nombres de las personas a las que se les enviará la información. Esto nos va ahorrar atrasos una vez ya impresa la información, ya que no se pueden realizar tachaduras al pie de plano en caso de que un nombre esté mal escrito.

Paso 4

Después de obtener la información para presentarla a revisión, debemos de estar seguros que el municipio tiene conocimiento de la construcción y que está de acuerdo, esto típicamente lo realiza el arquitecto/ingeniero encargado de la construcción civil, y lo que hace es ir a la Dirección de Administración Urbana, y solicitar el uso de suelo con la clave catastral.

Paso 5

Una vez que se generó la información, se presenta en forma a la dirección correspondiente.

Paso 6

Se nos entregará un recibo de pago, el cual irá en relación al giro y m2 de construcción; cuando se nos entregue, hay que revisar cuantos días se tienen para realizar el pago.

Paso 7

Se deberá de entregar el recibo de pago a la dependencia, para que comience el proceso. El hecho de pagar no significa que la dependencia se haya enterado de dicho pago. Es mejor presentar el recibo y que este sea sellado de recibido.

Paso 8

Cuando hagamos el paso anterior, hay que solicitar la fecha tentativa o máxima para obtener una respuesta, hoy en día, también las dependencias tienen auditorias de procesos, o hay veces que en los reglamentos se indica, pero es mejor tener la fecha en mente. Nota: el tiempo corre desde que tienen el registro del pago.

Paso 9

Será siempre obligación del interesado dar el seguimiento correspondiente a la solicitud de aprobación. Esto evitará cobros a futuro por regularización.

Paso 10

Recoger la información cuando se encuentre liberada, hay que revisar que ésta se encuentre debidamente sellada, firmada, si es el caso se nos otorguen oficios o cartas de aprobación. Esto es también responsabilidad del interesado revisar que todo se encuentre en orden.

La clave para esto es básicamente, tener formatos e información de los pasos que se realizan en su localidad, y al mismo tiempo la paciencia, recordemos, es un departamento inversamente proporcional al volumen de la población, así que si llevamos la información como debe de ser desde el principio, todo debe de fluir al ritmo indicado por la dependencia.

Por Ing. Perla Gil

Baja Design Engineering

#103 #1 FR 170422 Métodos de Cálculo de tuberías en NFPA 13

Dos métodos para calcular tuberías y demanda de agua de los RACI

Existen dos métodos para calcular los diámetros de las tuberías y determinar la demanda de agua para un sistema de rociadores por NFPA 13, obviamente los dos métodos son sólo para riesgos de ocupación en un sistema de control del fuego, en riesgos por almacenamiento o mercancías, sólo se puede utilizar el segundo método.

El primer método

El más antiguo utilizado es el llamado Pipe Schedule method o método por cédula de tubería, para darle una traducción. Consiste en una técnica para determinar el diámetro de la tubería del sistema de rociadores y la demanda de agua, que ha sido empleado desde la primera determinación de diámetros de tubería por cédula, el cual fue publicado en 1905 con el nombre de “cookbook” conocido como un método de cédula de tubería.

El método por cédula de tubería fue utilizado exclusivamente hasta el comienzo de los cálculos hidráulicos y fue reducido progresivamente desde la edición de 1991 de la NFPA 13. El método sigue estando aceptable con limitadas aplicaciones, usando tablas con el número máximo de rociadores por ramal (Branchline) o cabezal principal (Main) por diámetro de tubería alimentación. Hay tablas para cada ocupación, los diseñadores son capaces de seleccionar el diámetro o diámetros de una forma rápida, basados en el número de rociadores aguas abajo de la tubería seleccionada. Por ejemplo para una ocupación de riesgo ligero un diametro de tuberia de 1 pulg es permitido para alimentar dos rociadores (ver Imagen #1,  tabla: 28.5.3.4 Ordinary Hazard Pipe Schedule NFPA 13 Ed. 2022) y un diámetro de tubería de 1 ¼ pulg es permitido para alimentar tres rociadores.  El método por cédula es limitado para sistemas existentes y sistemas nuevos o extensiones de sistemas existentes, donde los requerimientos del capítulo 19 de NFPA 13  Ed. 2022 se cumplan. Se debe usar el límite de menos de 5,000 ft2 para ocupaciones nuevas en riesgo ligeros y ordinarios o adiciones o modificaciones en sistemas existentes con método por cédula   para ocupaciones con riesgos ligeros, ordinarios y extraordinarios. 

Table

Description automatically generated

Imagen #1

El segundo método

Es conocido como Hydraulic Design method o método de diseño hidráulico, por darle una traducción. En los sistemas de rociadores diseñados hidráulicamente, el suministro de agua es comparado con la demanda de agua necesaria para controlar o suprimir el fuego que pudiera presentarse. La demanda de agua necesaria o calculada para el sistema de rociadores deberá ser menor al suministro de agua  del sistema de rociadores. 

Este método de diseño de sistemas de rociadores hidráulicamente calculados se desarrolló entre 1940 ‘s y 1950’s.  Su primera aparición en NFPA 13 fue en la edición de 1966. Actualmente hay dos métodos de diseño hidráulico que se usan comúnmente en los diseños de sistemas de rociadores, con riesgos ligeros, ordinarios o extraordinarios (no se utilizan en ocupaciones de riesgos especiales o en ocupaciones de almacenamientos). Estos métodos son el  Density/Area design method (Método de diseño Densidad/Área) y el Room Design method (Método de diseño por cuarto), Ninguno de estos métodos aplica para sistemas de rociadores especiales o de aplicación especial. Los sistemas de rociadores protegen algunas ocupaciones de almacenamientos utilizando el método de diseño Densidad/Área pero NO utilizan las mismas curvas de Densidad/Área (ver Imagen #2,  figura: 21.4.1.2.2.1(a) Sprinkler System Design Curves – 20 ft (6.1 m) High Rack Storage – Class I Nonencapsulated Commodities – Conventional Pallets.  NFPA 13 Ed. 2022) utilizadas en riesgos por ocupación para evaluación o modificación de sistemas existentes. (ver Imagen #3,  figura: 19.3.3.1.1 Density/Area Curves for the evaluation or modification of existing.  NFPA 13 Ed. 2022)

Diagram

Description automatically generated

Imagen #2

Chart, line chart

Description automatically generated

Imagen #3

Conclusiones:

Es importante identificar y utilizar el método correcto en las diferentes aplicaciones de diseños de rociadores, ya que no todos los métodos descritos en NFPA 13 ed. 2022, Podrán utilizarse sin saber las limitaciones, consideraciones o incluso obsoletos en las actualizaciones de la norma. Por lo anterior siempre deberemos revisar y confirmar los métodos para calcular nuestras tuberías y la demanda de agua de los RACI.

Por Ing. Frank Guzman

#102 #2 EX 120122 Pre-acción, ¿qué es eso?

12 Ene 2022

El otro día me marco por teléfono una compañera de trabajo para que la apoyara en contestar unas dudas que tenía ella en relación a los sistemas de pre-acción. Su duda surgió al momento de seleccionar el compresor para mantener presión dentro del sistema. Había algo que no se lograba visualizar. Si mi sistema de pre-acción es eléctrico/eléctrico:

¿Por qué es necesario que mi sistema tenga aire comprimido? 

Para contestar esta pregunta es necesario regresarnos un poco a los conceptos de un sistema contraincendios tipo pre-acción.

Los sistemas de pre-acción de clasifican en:

Nota: el sistema de diluvio lo consideremos seco ya que no tiene agua.

Investigando en los libros de sistemas contra incendios nos topamos con el “Fire Protection Handbook” edición 20 donde, en la sección 16 pagina 35 del capitulo 3 del volumen 2, nos indica que tanto los sistemas secos como los de pre acción están cargados con aire a presión en lugar de agua.

En el sistema seco el aire mantiene cerrada la válvula para que esta no se abra con la presión del agua. Ahí ya una relación de presiones y tamaños de orificios que permiten que haya una presión menor en el lado del aire y una presión mayor en el lado del agua.  Al quebrarse el bulbo o derretirse el fusible, la presión del aire cae permitiendo que la presión del agua le gane a la presión del aire, por lo tanto, la válvula del riser se abre y deja pasar el agua. El agua llena las tuberías hasta que encuentra el punto por donde saldrá para combatir el fuego. En este tipo de sistemas, el rociador se abre, el agua pasa.

En el sistema de pre acción ocurre algo parecido, pero con una condición extra. El agua no pasa hasta que una señal extra es enviada.

Se dice que el sistema de pre acción estándar es lo mismo que el sistema seco, no hay condición. Es lo que en ingles conocemos como “non-interlock”.

El sistema de acción simple opera de la siguiente forma:

  1. El suministro de agua se retiene por medio de una válvula de pre acción.
  2. El sistema está equipado con un sistema de detección suplementario.
  3. El funcionamiento del sistema de detección permite que la válvula de pre acción se abra automáticamente y admita agua en la red de tuberías.
  4. El agua no se descargará del sistema hasta que un incendio haya generado una cantidad suficiente de calor para hacer que uno o dos rociadores funcionen.

El sistema de acción doble es básicamente como opera el sistema de acción simple y el sistema seco. Además de la caída de presión que registra un sistema seco, se debe enviar una señal a la válvula para que esta se abra. La válvula no se abre con la caída de presión. En el caso contrario, se le puede enviar una señal a la válvula de que se abra, pero esta no se abrirá por que hay una diferencia de presión en el lado de las tuberías con rociadores, entonces, quiere decir que no se ha activado ningún rociador y el sistema esperara a que haya caída de presión de aire para dejar pasar el agua.

Visto todo lo anterior, el sistema necesita aire comprimidos por esta razón:

  1. Se utiliza para monitorear la integridad del sistema. Si se presenta una fuga de aire, la presión bajará y enviará una alarma que indicará que hay una baja de presión en el sistema. Recordemos que la válvula del riser se abre con una señal eléctrica.
    1. En el de acción simple solo se necesita la señal del detector.
    2. En el de acción doble se necesita la señal del detector y la caída de presión.   

En resumen, como lo entiendo, la acción simple deja pasar el agua una vez recibida la señal, la de acción doble acción no deja pasar el agua hasta que dos condiciones de apliquen.

Por Eduardo López

BDE

Powered by WordPress.com.

Up ↑