#106 #4 EO 080523 Estructura vs Rociadores

EL 08052023

El rociador es una «cosititita» que se ubica debajo del techo. Este ayuda a proteger el inmueble en caso de un incendio, y se activa de forma automática. Cuando decimos que es automático nos referimos a que no se necesita de una persona que esté en ese momento para activarlo. Este se activa por diferencia de temperatura mas la presión del agua dentro de las tuberías que provocan el flujo de agua de forma automática.

Pero esta publicación no es para hablarte solamente del rociador. Queremos platicarte por qué es importante que el rociador se module con la estructura. Muchas empresas de diseño no le dan la importancia que debe y permiten que el diseño se realice sin considerar la estructura con el argumento de que en campo se resolverá. Lo que en realidad no te dicen es que en campo lo que se resolverá son todos los faltantes que no te consideró en la cotización.

Al no haber coordinación de rociadores y estructura, en campo se deben hacer muchas consideraciones para que los rociadores no se vean afectados por la estructura. Cuando decimos afectaciones nos referimos a las obstrucciones.

Diseño de Rociadores

Una situación común en los diseños es que no se cuente con la estructura. Esto se debe a varias situaciones.

  • Todas las especialidades comenzaron al mismo tiempo y por lo tanto no tienes forma de comenzar si la estructura también va comenzando.
  • El estructurista no envía la información porque, como nos dijeron una vez, «lo tuyo son unos tubitos». Tubitos? tubitos cuando le pasamos al cliente la orden de cambio por las obstrucciones.
  • Es un lugar existente y no cuentan con los planos asbuilt y el diseñador no considera hacer toma de medidas de la estructura.
  • No esta completa la información de la estructura.

Todos comienzan al mismo tiempo

Estos casos son poco probables debido a que normalmente las instalaciones mecánicas llegan al proyecto cuando ya hay un diseño arquitectónico y estructural. Puede llegar a pasar, pero muy poco.

No envían la estructura

Todos somos celosos de nuestro trabajo y no nos gusta que nos presionen y menos que nos estén pidiendo cosas. Cuando la estructura se hace al mismo tiempo si representa un problema porque así como nosotros podemos cambiar cosas, el estructurista también. Si observa que por las instalaciones debe poner refuerzos, eso hace que revisemos de nuevo nuestro diseño.

Una situación actual. La estructura se está diseñando con unos refuerzos que conocemos como Liga joist (Ver imagen). Si bien es un elemento pequeño, cuando es un rociador ESFR debemos poner especial atención, ya que es la diferencia entre poner 5 ramales o 4 ramales.

Es un lugar existente

Nos pasó una vez. Nuestra empresa hermana cotizó una instalación. El diseño o ingeniería lo realizó otra firma de ingeniería. No consideraron estructura, así que pusieron rociadores sin esta. Al hacer la revisión, nos dimos cuenta que no estaba la estructura, la solicitamos y nos dimos cuenta que el sistema podía rotarse 90 grados y con eso podíamos crear un ahorro, quitar soportes trapecio y colocar soporte tipo pera. Esto significó un gran ahorro para el cliente.

No está completa la información

Cuando no está completa la información sucede que no estamos seguros al 100% si un rociador estará obstruido o sí alguna tubería tendrá un «offset». Cuando estamos diseñando desde un inicio todas las especialidades, es necesario estar pendiente de las actualizaciones de las ingenierías. Mira las imágenes.

Se colocó un rociador en un área que estaba descubierta, sin embargo, en la instalación se encontró que se colocó una subestructura para colgar accesorios. No hubo coordinación entre el sistema contra incendios y la estructura. Esto provoca que se tengan que mover los rociadores o la subestructura. Sea cual sea, genera un costo que se puede evitar en papel.

Si bien aquí el desvío en la tubería se debió a un error del ingeniero, un «strut» puede causar el mismo efecto, un desvío de la tubería que tal vez no se considera en el diseño y que se debe adecuar en campo. Si piensas que un desvío así no afecta en la instalación, piensa que es tubería de 2 pulgadas y 50 ramales. 50 veces 4 codos + coples + riser niple para hacer el «offset». Pon número a eso y verás que si tiene impacto.

Si comienzas a diseñar, no se te olvide pedir la estructura. Si eres instalador y estas cotizando la instalación, pide que te manden la estructura en los planos del sistema contra incendios.

Te comparto este vídeo donde te platico de la importancia de la estructura cuando diseñamos rociadores.

Eduardo López

Ingeniero Mecánico, NICET, CFPS, CETRACI

#104 #1 PO 12102022 – 10 PASOS PARA OBTENER LA APROBACION DE LA AUTORIDAD CON JURIDICCION DENTRO DE UN MUNICIPIO DE UN PROYECTO CONTRA INCENDIO.

La idea es compartir de una forma resumida los pasos típicos a seguir para obtener la aprobación o autorización de un proyecto contra incendio en México. Cabe aclarar que siendo México del tamaño que es, cada municipalidad tendrá sus variantes, pero los primeros pasos nos deben ayudar a entender para saber qué es lo que debemos hacer.

Paso 1

Averiguar quiénes son las dependencias encargadas de la aprobación de un proyecto, hay municipios o ciudades, que será el Departamento de Protección Civil, otras donde será el H. Cuerpo de Bomberos, inclusive hay lugares donde son el mismo, lo que nos lleva al paso 2.

Paso 2

Pedir la información directamente en la dependencia.

Paso 3

Obtener formatos y pasos. Fijarse que sean los de la administración en curso y corroborar los nombres de las personas a las que se les enviará la información. Esto nos va ahorrar atrasos una vez ya impresa la información, ya que no se pueden realizar tachaduras al pie de plano en caso de que un nombre esté mal escrito.

Paso 4

Después de obtener la información para presentarla a revisión, debemos de estar seguros que el municipio tiene conocimiento de la construcción y que está de acuerdo, esto típicamente lo realiza el arquitecto/ingeniero encargado de la construcción civil, y lo que hace es ir a la Dirección de Administración Urbana, y solicitar el uso de suelo con la clave catastral.

Paso 5

Una vez que se generó la información, se presenta en forma a la dirección correspondiente.

Paso 6

Se nos entregará un recibo de pago, el cual irá en relación al giro y m2 de construcción; cuando se nos entregue, hay que revisar cuantos días se tienen para realizar el pago.

Paso 7

Se deberá de entregar el recibo de pago a la dependencia, para que comience el proceso. El hecho de pagar no significa que la dependencia se haya enterado de dicho pago. Es mejor presentar el recibo y que este sea sellado de recibido.

Paso 8

Cuando hagamos el paso anterior, hay que solicitar la fecha tentativa o máxima para obtener una respuesta, hoy en día, también las dependencias tienen auditorias de procesos, o hay veces que en los reglamentos se indica, pero es mejor tener la fecha en mente. Nota: el tiempo corre desde que tienen el registro del pago.

Paso 9

Será siempre obligación del interesado dar el seguimiento correspondiente a la solicitud de aprobación. Esto evitará cobros a futuro por regularización.

Paso 10

Recoger la información cuando se encuentre liberada, hay que revisar que ésta se encuentre debidamente sellada, firmada, si es el caso se nos otorguen oficios o cartas de aprobación. Esto es también responsabilidad del interesado revisar que todo se encuentre en orden.

La clave para esto es básicamente, tener formatos e información de los pasos que se realizan en su localidad, y al mismo tiempo la paciencia, recordemos, es un departamento inversamente proporcional al volumen de la población, así que si llevamos la información como debe de ser desde el principio, todo debe de fluir al ritmo indicado por la dependencia.

Por Ing. Perla Gil

Baja Design Engineering

#103 #1 FR 170422 Métodos de Cálculo de tuberías en NFPA 13

Dos métodos para calcular tuberías y demanda de agua de los RACI

Existen dos métodos para calcular los diámetros de las tuberías y determinar la demanda de agua para un sistema de rociadores por NFPA 13, obviamente los dos métodos son sólo para riesgos de ocupación en un sistema de control del fuego, en riesgos por almacenamiento o mercancías, sólo se puede utilizar el segundo método.

El primer método

El más antiguo utilizado es el llamado Pipe Schedule method o método por cédula de tubería, para darle una traducción. Consiste en una técnica para determinar el diámetro de la tubería del sistema de rociadores y la demanda de agua, que ha sido empleado desde la primera determinación de diámetros de tubería por cédula, el cual fue publicado en 1905 con el nombre de “cookbook” conocido como un método de cédula de tubería.

El método por cédula de tubería fue utilizado exclusivamente hasta el comienzo de los cálculos hidráulicos y fue reducido progresivamente desde la edición de 1991 de la NFPA 13. El método sigue estando aceptable con limitadas aplicaciones, usando tablas con el número máximo de rociadores por ramal (Branchline) o cabezal principal (Main) por diámetro de tubería alimentación. Hay tablas para cada ocupación, los diseñadores son capaces de seleccionar el diámetro o diámetros de una forma rápida, basados en el número de rociadores aguas abajo de la tubería seleccionada. Por ejemplo para una ocupación de riesgo ligero un diametro de tuberia de 1 pulg es permitido para alimentar dos rociadores (ver Imagen #1,  tabla: 28.5.3.4 Ordinary Hazard Pipe Schedule NFPA 13 Ed. 2022) y un diámetro de tubería de 1 ¼ pulg es permitido para alimentar tres rociadores.  El método por cédula es limitado para sistemas existentes y sistemas nuevos o extensiones de sistemas existentes, donde los requerimientos del capítulo 19 de NFPA 13  Ed. 2022 se cumplan. Se debe usar el límite de menos de 5,000 ft2 para ocupaciones nuevas en riesgo ligeros y ordinarios o adiciones o modificaciones en sistemas existentes con método por cédula   para ocupaciones con riesgos ligeros, ordinarios y extraordinarios. 

Table

Description automatically generated

Imagen #1

El segundo método

Es conocido como Hydraulic Design method o método de diseño hidráulico, por darle una traducción. En los sistemas de rociadores diseñados hidráulicamente, el suministro de agua es comparado con la demanda de agua necesaria para controlar o suprimir el fuego que pudiera presentarse. La demanda de agua necesaria o calculada para el sistema de rociadores deberá ser menor al suministro de agua  del sistema de rociadores. 

Este método de diseño de sistemas de rociadores hidráulicamente calculados se desarrolló entre 1940 ‘s y 1950’s.  Su primera aparición en NFPA 13 fue en la edición de 1966. Actualmente hay dos métodos de diseño hidráulico que se usan comúnmente en los diseños de sistemas de rociadores, con riesgos ligeros, ordinarios o extraordinarios (no se utilizan en ocupaciones de riesgos especiales o en ocupaciones de almacenamientos). Estos métodos son el  Density/Area design method (Método de diseño Densidad/Área) y el Room Design method (Método de diseño por cuarto), Ninguno de estos métodos aplica para sistemas de rociadores especiales o de aplicación especial. Los sistemas de rociadores protegen algunas ocupaciones de almacenamientos utilizando el método de diseño Densidad/Área pero NO utilizan las mismas curvas de Densidad/Área (ver Imagen #2,  figura: 21.4.1.2.2.1(a) Sprinkler System Design Curves – 20 ft (6.1 m) High Rack Storage – Class I Nonencapsulated Commodities – Conventional Pallets.  NFPA 13 Ed. 2022) utilizadas en riesgos por ocupación para evaluación o modificación de sistemas existentes. (ver Imagen #3,  figura: 19.3.3.1.1 Density/Area Curves for the evaluation or modification of existing.  NFPA 13 Ed. 2022)

Diagram

Description automatically generated

Imagen #2

Chart, line chart

Description automatically generated

Imagen #3

Conclusiones:

Es importante identificar y utilizar el método correcto en las diferentes aplicaciones de diseños de rociadores, ya que no todos los métodos descritos en NFPA 13 ed. 2022, Podrán utilizarse sin saber las limitaciones, consideraciones o incluso obsoletos en las actualizaciones de la norma. Por lo anterior siempre deberemos revisar y confirmar los métodos para calcular nuestras tuberías y la demanda de agua de los RACI.

Por Ing. Frank Guzman

#102 #2 EX 120122 Pre-acción, ¿qué es eso?

12 Ene 2022

El otro día me marco por teléfono una compañera de trabajo para que la apoyara en contestar unas dudas que tenía ella en relación a los sistemas de pre-acción. Su duda surgió al momento de seleccionar el compresor para mantener presión dentro del sistema. Había algo que no se lograba visualizar. Si mi sistema de pre-acción es eléctrico/eléctrico:

¿Por qué es necesario que mi sistema tenga aire comprimido? 

Para contestar esta pregunta es necesario regresarnos un poco a los conceptos de un sistema contraincendios tipo pre-acción.

Los sistemas de pre-acción de clasifican en:

Nota: el sistema de diluvio lo consideremos seco ya que no tiene agua.

Investigando en los libros de sistemas contra incendios nos topamos con el “Fire Protection Handbook” edición 20 donde, en la sección 16 pagina 35 del capitulo 3 del volumen 2, nos indica que tanto los sistemas secos como los de pre acción están cargados con aire a presión en lugar de agua.

En el sistema seco el aire mantiene cerrada la válvula para que esta no se abra con la presión del agua. Ahí ya una relación de presiones y tamaños de orificios que permiten que haya una presión menor en el lado del aire y una presión mayor en el lado del agua.  Al quebrarse el bulbo o derretirse el fusible, la presión del aire cae permitiendo que la presión del agua le gane a la presión del aire, por lo tanto, la válvula del riser se abre y deja pasar el agua. El agua llena las tuberías hasta que encuentra el punto por donde saldrá para combatir el fuego. En este tipo de sistemas, el rociador se abre, el agua pasa.

En el sistema de pre acción ocurre algo parecido, pero con una condición extra. El agua no pasa hasta que una señal extra es enviada.

Se dice que el sistema de pre acción estándar es lo mismo que el sistema seco, no hay condición. Es lo que en ingles conocemos como “non-interlock”.

El sistema de acción simple opera de la siguiente forma:

  1. El suministro de agua se retiene por medio de una válvula de pre acción.
  2. El sistema está equipado con un sistema de detección suplementario.
  3. El funcionamiento del sistema de detección permite que la válvula de pre acción se abra automáticamente y admita agua en la red de tuberías.
  4. El agua no se descargará del sistema hasta que un incendio haya generado una cantidad suficiente de calor para hacer que uno o dos rociadores funcionen.

El sistema de acción doble es básicamente como opera el sistema de acción simple y el sistema seco. Además de la caída de presión que registra un sistema seco, se debe enviar una señal a la válvula para que esta se abra. La válvula no se abre con la caída de presión. En el caso contrario, se le puede enviar una señal a la válvula de que se abra, pero esta no se abrirá por que hay una diferencia de presión en el lado de las tuberías con rociadores, entonces, quiere decir que no se ha activado ningún rociador y el sistema esperara a que haya caída de presión de aire para dejar pasar el agua.

Visto todo lo anterior, el sistema necesita aire comprimidos por esta razón:

  1. Se utiliza para monitorear la integridad del sistema. Si se presenta una fuga de aire, la presión bajará y enviará una alarma que indicará que hay una baja de presión en el sistema. Recordemos que la válvula del riser se abre con una señal eléctrica.
    1. En el de acción simple solo se necesita la señal del detector.
    2. En el de acción doble se necesita la señal del detector y la caída de presión.   

En resumen, como lo entiendo, la acción simple deja pasar el agua una vez recibida la señal, la de acción doble acción no deja pasar el agua hasta que dos condiciones de apliquen.

Por Eduardo López

BDE

#101 #1 EH 010422 Soporte trapecio

BDE blog 04 enero 2022

La primera vez que me pusieron a dibujar tuberías en una referencia de cad, las dibuje sin saber de soporteria. En ese momento no tenia en la mente los conceptos de estructura principal y estructura secundaria, por lo que, dibuje los ramales paralelos a la estructura secundaria porque así me parecía que debían ir, ya que estaba colocándolos de tal forma que no pasaran por los joist. No me reganaron, claro que no, tuve un mentor que fue paciente conmigo. Ahí fue cuando me explicaron el tema de los soportes tipo trapecio, no me ensenaron a calcularlos, sino a colocarlos, en ese momento no realizaba cálculos.

Crecí profesionalmente con la consigna de colocar los ramales perpendicularmente a la estructura secundaria para así poder evitar los soportes tipo trapecio. Los cabezales primarios si podían ser colocadores paralelos a la estructura secundaria o perpendicular. De esta forma se mantienen a los trapecios en la zona de los cabezales. Y así ha sido desde hace 15 años. No todo es bueno, esto lleva a que, si llegase a presentar un proyecto que lleve los ramales con trapecios, pues hago cortocircuito ya que no es la forma en que yo diseño, pero no está mal, es otra forma de realizar un diseño.

Y ¿qué es un soporte tipo trapecio?

Soporte tipo Trapecio

La NFPA 13 edición 2019 sección 3.3.89 indica que un “Soporte (Hanger). Un dispositivo o conjunto de

montaje que se utiliza para sostener la carga gravitatoria de las tuberías del sistema”, entonces, el soporte tipo trapecio es un conjunto de dispositivos o conjunto de montaje que se utiliza para sostener la carga gravitatoria de una tubería del sistema cuando esta colocada entre dos miembros estructurales y no se cruzan entre sí.

Y ¿cuándo se debe colocar un soporte tipo trapecio?

Se debe colocar cuando la tubería corre de forma paralela a la estructura secundaria. La estructura secundaria es esta que coloca entre bahías, entre ejes y es la que soporta el techo y de esta se cuelgan las instalaciones. No se confunda con la estructura principal, esta es la que soporta el edificio completo y pueden ser vigas o armaduras.

Y ¿qué es mejor, un soporte tipo trapecio o uno normal?

La respuesta corta seria como dice NFPA, “it depends”, es decir, depende.

¿De qué depende?

Depende del diseño. Como les comenté, no hay bueno ni malo, sino formas de diseñar. En el diseño es donde se pueden ahorrar dinero. Claro que el diseño bien hecho y pagado. ¿Por qué digo esto? Un diseño que tiene 5000 pies de ramales colocados paralelo a la estructura secundaria tendrá aproximadamente 417 soportes tipo trapecio, dividido entre 12 pies. Colocados perpendicularmente a la estructura secundaria, tendrían los mismos 417 soportes normales. Dirás, son los mismos soportes, si, son la misma cantidad de soportes, sin embargo, no es el mismo soporte.  

El soporte normal tiene

  1. Pera
  2. Varilla sin fin
  3. C-Clamp o samy,
  4. Y tal vez un retenedor
Soporte Normal

El soporte tipo trapecio tiene

  1. Pera
  2. Varilla sin fin
  3. Contratuerca
  4. Elemento trapecio que puede ser
    1. Tubo cedula 10
    2. Tubo cedula 40
    3. Angulo
  5. Lado izquierdo – Contratuerca
  6. Lado izquierdo – Varilla sin fin
  7. Lado izquierdo – C-clamp o samy
  8. Lado derecho – Contratuerca
  9. Lado derecho – Varilla sin fin
  10. Lado derecho – C-clamp o samy
Piezas de un trapecio

A groso modo así podría diferenciarse un tipo de soporte a otro. Pero vamos a realizar un ejercicio. Le podemos un costo x.

Soporte normal

#DispositivoPrecio
 1Pera5 usd
2Varilla sin fin2 usd
3C-Clamp o samy,3 usd
4Y tal vez un retenedor1 usd
 Total11 usd
Los costos no son reales, son para dar número al ejercicio.  

Soporte tipo trapecio  

#DispositivoPrecio
 1Pera5 usd
2Varilla sin fin2 usd
3Contratuerca0.5 usd
4Angulo7 usd
5Lado izquierdo – Contratuerca0.5 usd
6Lado izquierdo – Varilla sin fin2 usd
7Lado izquierdo – C-clamp o samy3 usd
8Lado derecho – Contratuerca0.5 usd
9Lado derecho – Varilla sin fin2 usd
10Lado derecho – C-clamp o samy3 usd
 Total25.5 usd
Los costos no son reales, son para dar número al ejercicio.  

Ahora veamos la diferencia. 417 soportes normales a 11 usd son 4 587 usd mientras que en trapecios sería una cantidad de 10 633.5. Quiero aclarar que esta no es una operación real, pero está muy cerca de la realidad. Un soporte trapecio cuesta más que un soporte normal y esa sería la diferencia entre colocar la tubería paralela a la estructura secundaria o ponerla de forma paralela.

Con esto no estoy diciendo que no se pueda colocar paralelo a la estructura, hay casos en los que es necesario por el tipo de diseño, tipo de estructura, tipo de sistema, área del sistema, en fin, hay muchas variantes. Por eso es muy importante realizar un diseño y colocar los detalles de instalación en los planos.

Te comparto este video donde platicamos de soportes.

#bdetvchannel
Ing. Eduardo L.

Powered by WordPress.com.

Up ↑